Seminar series
Date
Mon, 19 Nov 2012
Time
15:45 - 16:45
Location
L3
Speaker
Andrew Sale
Organisation
Oxford

The question of estimating the length of short conjugators in between
elements in a group could be described as an effective version of the
conjugacy problem. Given a finitely generated group $G$ with word metric
$d$, one can ask whether there is a function $f$ such that two elements
$u,v$ in $G$ are conjugate if and only if there exists a conjugator $g$ such
that $d(1,g) \leq f(d(1,u)+d(1,v))$. We investigate this problem in free
solvable groups, showing that f may be cubic. To do this we use the Magnus
embedding, which allows us to see a free solvable group as a subgroup of a
particular wreath product. This makes it helpful to understand conjugacy
length in wreath products as well as metric properties of the Magnus
embedding.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.