Group actions on rings and the Cech complex.

6 November 2012
17:00
Peter Symonds
Abstract

 We present a new, more conceptual proof of our result that, when a finite group acts on a polynomial ring, the regularity of the ring of invariants is at most zero, and hence one can write down bounds on the degrees of the generators and relations. This new proof considers the action of the group on the Cech complex and looks at when it splits over the group algebra. It also applies to a more general class of rings than just polynomial ones.