Seminar series
Date
Tue, 20 Nov 2012
17:00
Location
L2
Speaker
Martin Bridson
Organisation
Oxford

In our 2004 paper, Fritz Grunewald and I constructed the first
pairs of finitely presented, residually finite groups $u: P\to G$
such that $P$ is not isomorphic to $G$ but the map that $u$ induces on
profinite completions is an isomorphism. We were unable to determine if
there might exist finitely presented, residually finite groups $G$ that
with infinitely many non-isomorphic finitely presented subgroups $u_n:
P_n\to G$ such that $u_n$ induces a profinite isomorphism. I shall
discuss how two recent advances in geometric group theory can be used in
combination with classical work on Nielsen equivalence to settle this
question.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.