7 February 2013
Kevin Buzzard

Toby Gee and I have proposed the definition of a "C-group", an extension of Langlands' notion of an L-group, and argue that for an arithmetic version of Langlands' philosophy such a notion is useful for controlling twists properly. I will give an introduction to this business, and some motivation. I'll start at the beginning by explaining what an L-group is a la Langlands, but if anyone is interested in doing some background preparation for the talk, they might want to find out for themselves what an L-group (a Langlands dual group) is e.g. by looking it up on Wikipedia!

  • Number Theory Seminar