Date
Mon, 18 Nov 2013
Time
17:00 - 18:00
Location
L6
Speaker
Gabriel Koch
Organisation
University of Sussex

We show that the spatial norm in any critical homogeneous Besov

space in which local existence of strong solutions to the 3-d

Navier-Stokes equations is known must become unbounded near a singularity.

In particular, the regularity of these spaces can be arbitrarily close to

-1, which is the lowest regularity of any Navier-Stokes critical space.

This extends a well-known result of Escauriaza-Seregin-Sverak (2003)

concerning the Lebesgue space $L^3$, a critical space with regularity 0

which is continuously embedded into the spaces we consider. We follow the

``critical element'' reductio ad absurdum method of Kenig-Merle based on

profile decompositions, but due to the low regularity of the spaces

considered we rely on an iterative algorithm to improve low-regularity

bounds on solutions to bounds on a part of the solution in spaces with

positive regularity. This is joint work with I. Gallagher (Paris 7) and

F. Planchon (Nice).

Last updated on 6 May 2025, 2:04pm. Please contact us with feedback and comments about this page.