Towards an effective theory for nematic elastomers in a membrane limit

6 November 2014
12:00
Paul Plucinsky
Abstract
 

For nematic elastomers in a membrane limit, one expects in the elastic theory an interplay of material and structural non-linearities. For instance, nematic elastomer material has an associated anisotropy which allows for the formation of microstructure via nematic reorientation under deformation. Furthermore, polymeric membrane type structures (of which nematic elastomer membranes are a type) often wrinkle under applied deformations or tractions to avoid compressive stresses. An interesting question which motivates this study is whether the formation of microstructure can suppress wrinkling in nematic elastomer membranes for certain classes of deformation. This idea has captured the interest of NASA as they seek lightweight and easily deployable space structures, and since the use of lightweight deployable membranes is often limited by wrinkling.

 

In order to understand the interplay of these non-linearities, we derive an elastic theory for nematic elastomers of small thickness. Our starting point is three-dimensional elasticity, and for this we incorporate the widely used model Bladon, Terentjev and Warner for the energy density of a nematic elastomer along with a Frank elastic penalty on nematic reorientation. We derive membrane and bending limits taking the thickness to zero by exploiting the mathematical framework of Gamma-convergence. This follows closely the seminal works of LeDret and Raoult on the membrane theory and Friesecke, James and Mueller on the bending theory.

 

  • PDE CDT Lunchtime Seminar