L-functions as distributions

5 February 2015
Andrew Booker

In 1989, Selberg defined what came to be known as the "Selberg class" of $L$-functions, giving rise to a new subfield of analytic number theory in the intervening quarter century. Despite its popularity, a few things have always bugged me about the definition of the Selberg class. I will discuss these nitpicks and describe some modest attempts at overcoming them, with new applications.

  • Number Theory Seminar