Seminar series
Date
Mon, 09 Mar 2015
15:45
Location
L6
Speaker
John Parker
Organisation
Durham

If G is a semi-simple Lie group, it is known that all lattices
are arithmetic unless (up to finite index) G=SO(n,1) or SU(n,1).
Non-arithmetic lattices have been constructed in SO(n,1) for
all n and there are infinitely many non-arithmetic lattices in
SU(1,1). Mostow and Deligne-Mostow constructed 9 commensurability
classes of non-arithmetic lattices in SU(2,1) and a single
example in SU(3,1). The problem is open for n at least 4.
I will survey the history of this problem, and then describe
recent joint work with Martin Deraux and Julien Paupert, where
we construct 10 new commensurability classes of non-arithmetic
lattices in SU(2,1). These are the first examples to be constructed
since the work of Deligne and Mostow in 1986.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.