Date
Thu, 04 Jun 2015
Time
12:00 - 13:00
Location
L6
Speaker
Mariapia Palombaro
Organisation
University of Sussex

I will present some recent results concerning the higher gradient integrability of

σ-harmonic functions u with discontinuous coefficients σ, i.e. weak solutions of

div(σ∇u) = 0. When σ is assumed to be symmetric, then the optimal integrability

exponent of the gradient field is known thanks to the work of Astala and Leonetti

& Nesi. I will discuss the case when only the ellipticity is fixed and σ is otherwise

unconstrained and show that the optimal exponent is attained on the class of

two-phase conductivities σ: Ω⊂R27→ {σ1,σ2} ⊂M2×2. The optimal exponent

is established, in the strongest possible way of the existence of so-called

exact solutions, via the exhibition of optimal microgeometries.

(Joint work with V. Nesi and M. Ponsiglione.)

Last updated on 6 May 2025, 2:04pm. Please contact us with feedback and comments about this page.