A rigidity phenomenon for the Hardy-Littlewood maximal function

18 June 2015
Stefan Steinerberger

I will discuss a puzzling theorem about smooth, periodic, real-valued functions on the real line. After introducing the classical Hardy-Littlewood maximal function (which just takes averages over intervals centered at a point), we will prove that if a function has the property that the computation of the maximal function is simple (in the sense that it's enough to check two intervals), then the function is already sin(x) (up to symmetries). I do not know what maximal local averages have to do with the trigonometric function. Differentiation does not help either: the statement equivalently says that a delay differential equation with a solution space of size comparable to C^1(0,1) has only the trigonometric function as periodic solutions.

  • PDE CDT Lunchtime Seminar