Arthur's multiplicity formula for automorphic representations of certain inner forms of special orthogonal and symplectic groups

29 October 2015
16:00
Olivier Taibi
Abstract

I will explain the formulation and proof of Arthur's multiplicity formula for automorphic representations of special orthogonal groups and certain inner forms of symplectic groups $G$ over a number field $F$. I work under an assumption that substantially simplifies the use of the stabilisation of the trace formula, namely that there exists a non-empty set $S$ of real places of $F$ such that $G$ has discrete series at places in $S$ and is quasi-split at places outside $S$, and restricting to automorphic representations of $G(A_{F})$ which have algebraic regular infinitesimal character at the places in $S$. In particular, this proves the general multiplicity formula for groups $G$ such that $F$ is totally real, $G$ is compact at all real places of $F$ and quasi-split at all finite places of $F$. Crucially, the formulation of Arthur's multiplicity formula is made possible by Kaletha's recent work on local and global Galois
gerbes and their application to the normalisation of Kottwitz-Langlands-Shelstad transfer factors.

  • Number Theory Seminar