Obstructions to positive scalar curvature via submanifolds of different codimension

6 June 2016
14:15
Thomas Schick
Abstract

We want to discuss a collection of results around the following Question: Given a smooth compact manifold $M$ without boundary, does $M$ admit a Riemannian metric of positive scalar curvature?

We focus on the case of spin manifolds. The spin structure, together with a chosen Riemannian metric, allows to construct a specific geometric differential operator, called Dirac operator. If the metric has positive scalar curvature, then 0 is not in the spectrum of this operator; this in turn implies that a topological invariant, the index, vanishes.
 

We use a refined version, acting on sections of a bundle of modules over a $C^*$-algebra; and then the index takes values in the K-theory of this algebra. This index is the image under the Baum-Connes assembly map of a topological object, the K-theoretic fundamental class.

The talk will present results of the following type:
 
If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has non-trivial index, what conditions imply that $M$ does not admit a metric of positive scalar curvature? How is this related to the Baum-Connes assembly map? 

We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$), Engel and new generalizations. Moreover, we will show how these results fit in the context of the Baum-Connes assembly maps for the manifold and the submanifold.