Seminar series
Date
Thu, 12 May 2016
12:00
12:00
Location
L6
Speaker
Roland Grinis
Organisation
Oxford
In this talk, we shall discuss how building upon the threshold theorem for wave maps, techniques inspired by the blow-up analysis of supercritical harmonic maps, can lead to a decomposition of the map into a decoupled sum of rescaled solitons, along a suitably chosen sequence of time slices converging to the maximal time of existence, with a term having asymptotically vanishing energy in the interior of the light cone, and when the target manifold is an Euclidean sphere. This work is motivated by the soliton resolution conjecture, on which spectacular progress has been achieved recently for equivariant wave maps, radial Yang-Mills fields and semi-linear critical wave equations.