Regularity Theory for Symmetric-Convex Functionals of Linear Growth

2 June 2016
12:00
Franz Gmeineder
Abstract
In this talk I will report on regularity results for convex autonomous functionals of linear growth which depend on the symmetric gradients. Here, generalised minimisers will be attained in the space BD of functions of bounded of deformation which consists of those summable functions for which the distributional symmetric gradient is a Radon measure of finite total variation. Due to Ornstein's Non--Inequality, BD contains BV as a proper subspace and thus the full weak gradients of BD--functions might not exist even as Radon measures. In this talk, I will discuss conditions on the variational integrand under which partial regularity or higher Sobolev regularity for minima and hence the existence and higher integrability of the full gradients of minima can be established. This is joint work with Jan Kristensen.
  • PDE CDT Lunchtime Seminar