Date
Thu, 24 Nov 2016
Time
16:00 - 17:30
Location
L4
Speaker
Jack Jacquier
Organisation
Imperial College London

We propose a randomised version of the Heston model--a widely used stochastic volatility model in mathematical finance--assuming that the starting point of the variance process is a random variable. In such a system, we study the small- and large-time behaviours of the implied volatility, and show that the proposed randomisation generates a short-maturity smile much steeper (`with explosion') than in the standard Heston model, thereby palliating the deficiency of classical stochastic volatility models in short time. We precisely quantify the speed of explosion of the smile for short maturities in terms of the right tail of the initial distribution, and in particular show that an explosion rate of $t^\gamma$ (gamma in [0,1/2]) for the squared implied volatility--as observed on market data--can be obtained by a suitable choice of randomisation. The proofs are based on large deviations techniques and the theory of regular variations. Joint work with Fangwei Shi (Imperial College London)

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.