Date
Tue, 08 Nov 2016
17:00
Location
C1
Speaker
Alexander Pushnitski
Organisation
King's College London


I will report on the results of my recent work with Dmitri Yafaev (Univeristy of Rennes-1). We consider functions $\omega$ on the unit circle with a finite number of logarithmic singularities. We study the approximation of $\omega$ by rational functions in the BMO norm. We find explicitly the leading term of the asymptotics of the distance in the BMO norm between $\omega$ and the set of rational functions of degree $n$ as $n$ goes to infinity. Our approach relies on the Adamyan-Arov-Krein theorem and on the study of the asymptotic behaviour of singular values of Hankel operators.
 

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.