Seminar series
Date
Mon, 16 Jan 2017
Time
15:45 - 16:45
Location
L6
Speaker
David Hume
Organisation
Oxford

Coarse embeddings occur completely naturally in geometric group theory: every finitely generated subgroup of a finitely generated group is coarsely embedded. Since even very nice classes of groups - hyperbolic groups or right-angled Artin groups for example - are known to have 'wild' collections of subgroups, there are precious few invariants that one may use to prove a statement of the form '$H$ does not coarsely embed into $G$' for two finitely generated groups $G,H$.
The growth function and the asymptotic dimension are two coarse invariants which which have been extensively studied, and a more recent invariant is the separation profile of Benjamini-Schramm-Timar.

In this talk I will describe a new spectrum of coarse invariants, which include both the separation profile and the growth function, and can be used to tackle many interesting problems, for instance: Does there exist a coarse embedding of the Baumslag-Solitar group $BS(1,2)$ or the lamplighter group $\mathbb{Z}_2\wr\mathbb{Z}$ into a hyperbolic group?

This is part of an ongoing collaboration with John Mackay and Romain Tessera.
 

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.