The technique of scanning, or the parameterised Pontrjagin--Thom construction, has been extraordinarily successful in calculating the cohomology of configuration spaces (McDuff), moduli spaces of Riemann surfaces (Madsen, Tillmann, Weiss), moduli spaces of graphs (Galatius), and moduli spaces of manifolds of higher dimension (Galatius, R-W, Botvinnik, Perlmutter), with constant coefficients. In each case the method also works to study the cohomology of moduli spaces of objects equipped with a "tangential structure". I will explain how choosing an auxiliary highly-symmetric tangential structure often lets one calculate the cohomology of these moduli spaces with large families of twisted coefficients, by exploiting the symmetries of the tangential structure and using a little representation theory.
	
	 
Seminar series
          
      Date
              Mon, 13 Mar 2017
      
      
          Time
        15:30 - 
        16:30
          Location
              L5
          Speaker
              Oscar Randal-Williams
          Organisation
              Cambridge
           
    