Date
Thu, 16 Nov 2017
Time
14:00 - 15:00
Location
L4
Speaker
Professor Miguel Anjos
Organisation
École Polytechnique Montréal

Maintenance activities help prevent costly power generator breakdowns but because generators under maintenance are typically unavailable, the impact of maintenance schedules is significant and their cost must be accounted for when planning maintenance. In this paper we address the generator maintenance scheduling problem in hydropower systems. While this problem has been widely studied, specific operating conditions of hydroelectric systems have received less attention. We present a mixed-integer linear programming model that considers the time windows of the maintenance activities, as well as the nonlinearities and disjunctions of the hydroelectric production functions. Because the resulting model is hard to solve, we also propose an extended formulation, a set reduction approach that uses logical conditions for excluding unnecessary set elements from the model, and valid inequalities. Computational experiments using a variety of instances adapted from a real hydropower system in Canada support the conclusion that the extended formulation with set reduction achieves the best results in terms of computational time and optimality gap. This is joint work with Jesus Rodriguez, Pascal Cote and Guy Desaulniers.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.