New Formulations for Generator Maintenance Scheduling in Hydropower Systems

16 November 2017
Professor Miguel Anjos

Maintenance activities help prevent costly power generator breakdowns but because generators under maintenance are typically unavailable, the impact of maintenance schedules is significant and their cost must be accounted for when planning maintenance. In this paper we address the generator maintenance scheduling problem in hydropower systems. While this problem has been widely studied, specific operating conditions of hydroelectric systems have received less attention. We present a mixed-integer linear programming model that considers the time windows of the maintenance activities, as well as the nonlinearities and disjunctions of the hydroelectric production functions. Because the resulting model is hard to solve, we also propose an extended formulation, a set reduction approach that uses logical conditions for excluding unnecessary set elements from the model, and valid inequalities. Computational experiments using a variety of instances adapted from a real hydropower system in Canada support the conclusion that the extended formulation with set reduction achieves the best results in terms of computational time and optimality gap. This is joint work with Jesus Rodriguez, Pascal Cote and Guy Desaulniers.

  • Computational Mathematics and Applications Seminar