Date
Thu, 09 Nov 2017
Time
16:00 - 17:30
Location
L3
Speaker
Stephen Watson
Organisation
University of Glasgow

The statistical physics governing phase-ordering dynamics following a symmetry breaking rst-order phase transition is an area of active research. The Coarsening/Ageing of the ensemble of phase domains, wherein irreversible annihilation or joining of domains yields a growing characteristic domain length, is an omniprescent feature whose universal characteristics one would wish to understand. Driven kinetic Ising models and growing nano-faceted crystals are theoretically important examples of such Coarsening (Ageing) Dynamical Systems (CDS), since they additionally break thermodynamic uctuation-dissipation relations. Power-laws for the growth in time of the characteristic size of domains, and a concomitant scale-invariance of associated length distributions, have so frequently been empirically observed that their presence has acquired the status of a principle; the so-called Dynamic-Scaling Hypothesis. But the dynamical symmetries of a given CDS- its Coarsening Group G - may include more than the global spatio-temporal scalings underlying the Dynamic Scaling Hypothesis. In this talk, I will present a recently developed theoretical framework (Ref.[1]) that shows how the symmetry group G of a Coarsening (ageing) Dynamical System necessarily yields G-equivariance (covariance) of its universal statistical observables. We exhibit this theory for a variety of model systems, of both thermodynamic and driven type, with symmetries that may also be Emergent (Ref. [2,3]) and/or Hidden. We will close with a magical theoretical coarsening law that combines Lorentzian and Parabolic symmetries!

References
[1] Lorentzian symmetry predicts universality beyond scaling laws, SJ Watson, EPL 118 (5), 56001, (Aug.2, 2017) Editor's Choice
[2] Emergent parabolic scaling of nano-faceting crystal growth Stephen J. Watson, Proc. R. Soc. A 471: 20140560 (2015)
[3] Scaling Theory and Morphometrics for a Coarsening Multiscale Surface, via a Principle of Maximal Dissipation", Stephen

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 15:24.