Seminar series
Date
Mon, 19 Feb 2018
12:45
Location
L3
Speaker
Cobi Sonnenschein
Organisation
Tel Aviv

I will start with briefly describing the HISH ( Holography Inspired Hadronic String) model and reviewing the fits of the spectra of mesons, baryons, glue-balls and exotic hadrons. 

I will present the determination of the hadron strong decay widths. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as $\Gamma =\frac{\pi}{2}A T L $ where T and L are the tension and length of the string and A is a dimensionless universal constant. The partial width of a given decay mode is given by $\Gamma_i/\Gamma = \Phi_i \exp(-2\pi C m_\text{sep}^2/T$ where $\Phi_i$ is a phase space factor, $m_\text{sep}$ is the mass of the "quark" and "antiquark" created at the splitting point, and C is adimensionless coefficient close to unity. I will show the fits of the theoretical results to experimental data for mesons and baryons. I will examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons $A = 0.095\pm  0.01$  is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. I will discuss the relation with string fragmentation and jet formation. I will extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia will be proposed and will be shown to reproduce the decay width of  states. The dependence of the width on spin and symmetry will be discussed. I will further apply this model to the decays of glueballs and exotic hadrons.

 

 
 
 
Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.