Morita equivalence of Peter-Weyl Iwahori algebras

6 March 2018

The Peter-Weyl idempotent of a parahoric subgroup is the sum of the idempotents of irreducible representations which have a nonzero Iwahori fixed vector. The associated convolution algebra is called a Peter-Weyl Iwahori algebra.  We show any Peter-Weyl Iwahori algebra is Morita equivalent to the Iwahori-Hecke algebra.  Both the Iwahori-Hecke algebra and a Peter-Weyl Iwahori algebra have a natural C*-algebra structure, and the Morita equivalence preserves irreducible hermitian and unitary modules.  Both algebras have another anti-involution denoted as •, and the Morita equivalence preserves irreducible and unitary modules for the • involution.   This work is joint with Dan Barbasch.