We present some recent results on the regularity criteria for weak solutions to the incompressible Navier--Stokes equations (NSE) in 3 dimensions. By the work of Constantin--Fefferman, it is known that the alignment of vorticity directions is crucial to the regularity of NSE in \R3. In this talk we show a boundary regularity theorem for NSE on curvilinear domains with oblique derivative boundary conditions. As an application, the boundary regularity of incompressible flows on balls, cylinders and half-spaces with Navier boundary condition is established, provided that the vorticity is coherently aligned up to the boundary. The effects of vorticity alignment on the Lq, 1<q<∞ norm of the vorticity will also be discussed.