Date
Thu, 15 Nov 2018
Time
16:00 - 17:30
Location
L3
Speaker
Bruno Eckhardt
Organisation
Philipps-Universität Marburg

Boundary layers control the transport of momentum, heat, solutes and other quantities between walls and the bulk of a flow. The Prandtl-Blasius boundary layer was the first quantitative example of a flow profile near a wall and could be derived by an asymptotic expansion of the Navier-Stokes equation. For higher flow speeds we have scaling arguments and models, but no derivation from the Navier-Stokes equation. The analysis of exact coherent structures in plane Couette flow reveals ingredients of such a more rigorous description of boundary layers. I will describe how exact coherent structures can be scaled to obtain self-similar structures on ever smaller scales as the Reynolds number increases.

A quasilinear approximation allows to combine the structures self-consistently to form boundary layers. Going beyond the quasilinear approximation will then open up new approaches for controlling and manipulating boundary layers.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.