Instabilities in Blistering

24 January 2019
16:00
Dr Draga Pihler-Puzović
Abstract

Blisters form when a thin surface layer of a solid body separates/delaminates from the underlying bulk material over a finite, bounded region. It is ubiquitous in a range of industrial applications, e.g. blister test is applied to assess the strength of adhesion between thin elastic films and their solid substrates, and during natural processes, such as formation and spreading of laccoliths or retinal detachment.

We study a special case of blistering, in which a thin elastic membrane is adhered to the substrate by a thin layer of viscous fluid. In this scenario, the expansion of the newly formed blister by fluid injection occurs via a displacement flow, which peels apart the adhered surfaces through a two-way interaction between flow and deformation. If the injected fluid is less viscous than the fluid already occupying the gap, patterns of short and stubby fingers form on the propagating fluid interface in a radial geometry. This process is regulated by membrane compliance, which if increased delays the onset of fingering to higher flow rates and reduces finger amplitude. We find that the morphological features of the fingers are selected in a simple way by the local geometry of the compliant cell. In contrast, the local geometry itself is determined from a complex fluid–solid interaction, particularly in the case of rectangular blisters. Furthermore, changes to the geometry of the channel cross-section in the latter case lead to a rich variety of possible interfacial patterns. Our experiments provide a link between studies of airway reopening, Saffman-Taylor fingering and printer’s instability.   

  • Industrial and Applied Mathematics Seminar