Acoustic and hyperelastic metamaterials – stretching the truth?

7 March 2019
Professor William J Parnell

Transformation theory has long been known to be a mechanism for 
the design of metamaterials. It gives rise to the required properties of the 
material in order to direct waves in the manner desired.  This talk will 
focus on the mathematical theory underpinning the design of acoustic and 
elastodynamic metamaterials based on transformation theory and aspects of 
the experimental confirmation of these designs. In the acoustics context it 
is well-known that the governing equations are transformation invariant and 
therefore a whole range of microstructural options are available for design, 
although designing materials that can harness incoming acoustic energy in 
air is difficult due to the usual sharp impedance contrast between air and 
the metamaterial in question. In the elastodynamic context matters become 
even worse in the sense that the governing equations are not transformation 
invariant and therefore we generally require a whole new class of materials.

In the acoustics context we will describe a new microstructure that consists 
of rigid rods that is (i) closely impedance matched to air and (ii) slows 
down sound in air. This is shown to be useful in a number of configurations 
and in particular it can be employed to half the resonant frequency of the 
standard quarter-wavelength resonator (or alternatively it can half the size 
of the resonator for a specified resonant frequency) [1].

In the elastodynamics context we will show that although the equations are 
not transformation invariant one can employ the theory of waves in 
pre-stressed hyperelastic materials in order to create natural elastodynamic 
metamaterials whose inhomogeneous anisotropic material properties are 
generated naturally by an appropriate pre-stress. In particular it is shown 
that a certain class of hyperelastic materials exhibit this so-called 
“invariance property” permitting the creation of e.g. hyperelastic cloaks 
[2,3] and invariant metamaterials. This has significant consequences for the 
design of e.g. phononic media: it is a well-known and frequently exploited 
fact that pre-stress and large deformation of hyperelastic materials 
modifies the linear elastic wave speed in the deformed medium. In the 
context of periodic materials this renders materials whose dynamic 
properties are “tunable” under pre-stress and in particular this permits 
tunable band gaps in periodic media [4]. However the invariant hyperelastic 
materials described above can be employed in order to design a class of 
phononic media whose band-gaps are invariant to deformation [5]. We also 
describe the concept of an elastodynamic ground cloak created via pre-stress 

[1] Rowley, W.D., Parnell, W.J., Abrahams, I.D., Voisey, S.R. and Etaix, N. 
(2018) “Deepening subwavelength acoustic resonance via metamaterials with 
universal broadband elliptical microstructure”. Applied Physics Letters 112, 
[2] Parnell, W.J. (2012) “Nonlinear pre-stress for cloaking from antiplane 
elastic waves”. Proc Roy Soc A 468 (2138) 563-580.
[3] Norris, A.N. and Parnell, W.J. (2012) “Hyperelastic cloaking theory: 
transformation elasticity with pre-stressed solids”. Proc Roy Soc A 468 
(2146) 2881-2903
[4] Bertoldi, K. and Boyce, M.C. (2008)  “Mechanically triggered 
transformations of phononic band gaps in periodic elastomeric structures”. 
Phys Rev B 77, 052105.
[5] Zhang, P. and Parnell, W.J. (2017) “Soft phononic crystals with 
deformation-independent band gaps” Proc Roy Soc A 473, 20160865.
[6] Zhang, P. and Parnell, W.J. (2018) “Hyperelastic antiplane ground 
cloaking” J Acoust Soc America 143 (5)

  • Industrial and Applied Mathematics Seminar