On boundary value problem for steady Navier-Stokes system in 2D exterior domains

14 January 2019
Mikhail Korobkov

We study solutions to stationary Navier-Stokes system in two dimensional exterior domains, namely, existence of these solutions and their asymptotical behavior. The talk is based on the recent joint papers with K. Pileckas and R. Russo where the uniform boundedness and uniform convergence at infinity for arbitrary solution with finite Dirichlet integral were established. Here  no restrictions on smallness of fluxes are assumed, etc.  In the proofs we develop the ideas of the classical papers of Gilbarg & H.F. Weinberger (Ann. Scuola Norm.Pisa 1978) and Amick (Acta Math. 1988).

  • Partial Differential Equations Seminar