Derivation, analysis and approximation of coupled PDEs on manifolds with high dimensionality gap

14 February 2019
14:00
Prof Paolo Zunino
Abstract

 Multiscale methods based on coupled partial differential equations defined on bulk and embedded manifolds are still poorly explored from the theoretical standpoint, although they are successfully used in applications, such as microcirculation and flow in perforated subsurface reservoirs. This work aims at shedding light on some theoretical aspects of a multiscale method consisting of coupled partial differential equations defined on one-dimensional domains embedded into three-dimensional ones. Mathematical issues arise because the dimensionality gap between the bulk and the inclusions is larger than one, named as the high dimensionality gap case. First, we show that such model derives from a system of full three-dimensional equations, by the application of a topological model reduction approach. Secondly, we rigorously analyze the problem, showing that the averaging operators applied for the model reduction introduce a regularization effect that resolves the issues due to the singularity of solutions and to the ill-posedness of restriction operators. Then, we discretize the problem by means of the finite element method and we analyze the approximation error. Finally, we exploit the structure of the model reduction technique to analyze the modeling error. This study confirms that for infinitesimally small inclusions, the modeling error vanishes.

This is a joint work with Federica Laurino, Department of Mathematics, Politecnico di Milano.

  • Computational Mathematics and Applications Seminar