Date
Fri, 10 May 2019
Time
14:00 - 15:30
Location
L6
Speaker
Prof. Jacques Vanneste
Organisation
University of Edinburgh

Inertia-gravity waves (IGWs) are ubiquitous in the ocean and the atmosphere. Once generated (by tides, topography, convection and other processes), they propagate and scatter in the large-scale, geostrophically-balanced background flow. I will discuss models of this scattering which represent the background flow as a random field with known statistics. Without assumption of spatial scale separation between waves and flow, the scattering is described by a kinetic equation involving a scattering cross section determined by the energy spectrum of the flow. In the limit of small-scale waves, this equation reduces to a diffusion equation in wavenumber space. This predicts, in particular, IGW energy spectra scaling as k^{-2}, consistent with observations in the atmosphere and ocean, lending some support to recent claims that (sub)mesoscale spectra can be attributed to almost linear IGWs.  The theoretical predictions are checked against numerical simulations of the three-dimensional Boussinesq equations.
(Joint work with Miles Savva and Hossein Kafiabad.)

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.