Arithmetic quantum chaos and small scale equidistribution

2 May 2019
16:00
Peter Humphries
Abstract

Berry's random wave conjecture is a heuristic that the eigenfunctions of a classically ergodic system ought to display Gaussian random behaviour, as though they were random waves, in the large eigenvalue limit. We discuss two manifestations of this conjecture for eigenfunctions of the Laplacian on the modular surface: Planck scale mass equidistribution, and an asymptotic for the fourth moment. We will highlight how the resolution of these two problems in this number-theoretic setting involves a delicate understanding of the behaviour of certain families of L-functions.

  • Number Theory Seminar