Seminar series
Date
Tue, 12 Nov 2019
Time
12:00 - 13:00
Location
C1
Speaker
Barbara Mahler
Organisation
Mathematical Institute

Spreading processes on geometric networks are often influenced by a network’s underlying spatial structure, and it is insightful to study the extent to which a spreading process follows that structure. In particular, considering a threshold contagion on a network whose nodes are embedded in a manifold and which has both 'geometric edges' that respect the geometry of the underlying manifold, as well as 'non-geometric edges' that are not constrained by the geometry of the underlying manifold, one can ask whether the contagion propagates as a wave front along the underlying geometry, or jumps via long non-geometric edges to remote areas of the network. 
Taylor et al. developed a methodology aimed at determining the spreading behaviour of threshold contagion models on such 'noisy geometric networks' [1]. This methodology is inspired by nonlinear dimensionality reduction and is centred around a so-called 'contagion map' from the network’s nodes to a point cloud in high dimensional space. The structure of this point cloud reflects the spreading behaviour of the contagion. We apply this methodology to a family of noisy-geometric networks that can be construed as being embedded in a torus, and are able to identify a region in the parameter space where the contagion propagates predominantly via wave front propagation. This consolidates contagion map as both a tool for investigating spreading behaviour on spatial network, as well as a manifold learning technique. 
[1] D. Taylor, F. Klimm, H. A. Harrington, M. Kramar, K. Mischaikow, M. A. Porter, and P. J. Mucha. Topological data analysis of contagion maps for examining spreading processes on networks. Nature Communications, 6(7723) (2015)

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.