On the preconditioning of coupled multi-physics problems

14 November 2019
Massimiliano Ferronato

The fully coupled numerical simulation of different physical processes, which can typically occur
at variable time and space scales, is often a very challenging task. A common feature of such models is that
their discretization gives rise to systems of linearized equations with an inherent block structure, which
reflects the properties of the set of governing PDEs. The efficient solution of a sequence of systems with
matrices in a block form is usually one of the most time- and memory-demanding issue in a coupled simulation.
This effort can be carried out by using either iteratively coupled schemes or monolithic approaches, which
tackle the problem of the system solution as a whole.

This talk aims to discuss recent advances in the monolithic solution of coupled multi-physics problems, with
application to poromechanical simulations in fractured porous media. The problem is addressed either by proper
sparse approximations of the Schur complements or special splittings that can partially uncouple the variables
related to different physical processes. The selected approaches can be included in a more general preconditioning
framework that can help accelerate the convergence of Krylov subspace solvers. The generalized preconditioner
relies on approximately decoupling the different processes, so as to address each single-physics problem
independently of the others. The objective is to provide an algebraic framework that can be employed as a
general ``black-box'' tool and can be regarded as a common starting point to be later specialized for the
particular multi-physics problem at hand.

Numerical experiments, taken from real-world examples of poromechanical problems and fractured media, are used to
investigate the behaviour and the performance of the proposed strategies.

  • Computational Mathematics and Applications Seminar