Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data

10 March 2020
Fernando Rosas

The notion of emergence is at the core of many of the most challenging open scientific questions, being so much a cause of wonder as a perennial source of philosophical headaches. Two classes of emergent phenomena are usually distinguished: strong emergence, which corresponds to supervenient properties with irreducible causal power; and weak emergence, which are properties generated by the lower levels in such "complicated" ways that they can only be derived by exhaustive simulation. While weak emergence is generally accepted, a large portion of the scientific community considers causal emergence to be either impossible, logically inconsistent, or scientifically irrelevant.

In this talk we present a novel, quantitative framework that assesses emergence by studying the high-order interactions of the system's dynamics. By leveraging the Integrated Information Decomposition (ΦID) framework [1], our approach distinguishes two types of emergent phenomena: downward causation, where macroscopic variables determine the future of microscopic degrees of freedom; and causal decoupling, where macroscopic variables influence other macroscopic variables without affecting their corresponding microscopic constituents. Our framework also provides practical tools that are applicable on a range of scenarios of practical interest, enabling to test -- and possibly reject -- hypotheses about emergence in a data-driven fashion. We illustrate our findings by discussing minimal examples of emergent behaviour, and present a few case studies of systems with emergent dynamics, including Conway’s Game of Life, neural population coding, and flocking models.
[1] Mediano, Pedro AM, Fernando Rosas, Robin L. Carhart-Harris, Anil K. Seth, and Adam B. Barrett. "Beyond integrated information: A taxonomy of information dynamics phenomena." arXiv preprint arXiv:1909.02297 (2019).