Date
Mon, 02 Mar 2020
Time
14:15 - 15:15
Location
L3
Speaker
AMARJIT BUDHIRAJA
Organisation
University of North Carolina

Consider a collection of particles whose state evolution is described through a system of interacting diffusions in which each particle
is driven by an independent individual source of noise and also by a small amount of noise that is common to all particles. The interaction between the particles is due to the common noise and also through the drift and diffusion coefficients that depend on the state empirical measure. We study large deviation behavior of the empirical measure process which is governed by two types of scaling, one corresponding to mean field asymptotics and the other to the Freidlin-Wentzell small noise asymptotics. 
Different levels of intensity of the small common noise lead to different types of large deviation behavior, and we provide a precise characterization of the various regimes. We also study large deviation behavior of  interacting particle systems approximating various types of Feynman-Kac functionals. Proofs are based on stochastic control representations for exponential functionals of Brownian motions and on uniqueness results for weak solutions of stochastic differential equations associated with controlled nonlinear Markov processes. 

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.