Vanishing viscosity limit of the compressible Navier-Stokes equations with general pressure law

23 January 2020

Do classical solutions of the compressible Navier-Stokes equations converge to an entropy solution of their inviscid counterparts, the Euler equations? In this talk we present a result which answers this question affirmatively, in the one-dimensional case, for a particular class of fluids. Specifically, we consider gases that exhibit approximately polytropic behaviour in the vicinity of the vacuum, and that are isothermal for larger values of the density (which we call approximately isothermal gases). Our approach makes use of methods from the theory of compensated compactness of Tartar and Murat, and is inspired by the earlier works of Chen and Perepelitsa, Lions, Perthame and Tadmor, and Lions, Perthame and Souganidis. This is joint work with Matthew Schrecker.

  • PDE CDT Lunchtime Seminar