The Attractor Mechanism and the Arithmetic of Calabi-Yau Manifolds

27 January 2020
12:45
Philip Candelas
Abstract

In the process of studying the zeta-function for one parameter families of Calabi-Yau manifolds we have been led to a manifold, for which the quartic numerator of the zeta-function factorises into two quadrics remarkably often. Among these factorisations, we find persistent factorisations; these are determined by a parameter that satisfies an algebraic equation with coefficients in Q, so independent of any particular prime.  We note that these factorisations are due a splitting of Hodge structure and that these special values of the parameter are rank two attractor points in the sense of IIB supergravity. To our knowledge, these points provide the first explicit examples of non-singular, non-rigid rank two attractor points for Calabi-Yau manifolds of full SU(3) holonomy. Modular groups and modular forms arise in relation to these attractor points in a way that, to a physicist, is unexpected. This is a report on joint work with Xenia de la Ossa, Mohamed Elmi and Duco van Straten.

 

 

  • String Theory Seminar