Regularity and rigidity results for nonlocal minimal graphs

3 February 2020
Matteo Cozzi

Nonlocal minimal surfaces are hypersurfaces of Euclidean space that minimize the fractional perimeter, a geometric functional introduced in 2010 by Caffarelli, Roquejoffre, and Savin in connection with phase transition problems displaying long-range interactions.

In this talk, I will introduce these objects, describe the most important progresses made so far in their analysis, and discuss the most challenging open questions.

I will then focus on the particular case of nonlocal minimal graphs and present some recent results obtained on their regularity and classification in collaboration with X. Cabre, A. Farina, and L. Lombardini.


  • Partial Differential Equations Seminar