Date
Mon, 04 May 2020
Time
16:00 - 17:00
Speaker
Xin Guo
Organisation
Berkeley, USA


Generative Adversarial Networks (GANs) have celebrated great empirical success, especially in image generation and processing. Meanwhile, Mean-Field Games (MFGs),  as analytically feasible approximations for N-player games, have experienced rapid growth in theory of controls. In this talk, we will discuss a new theoretical connections between GANs and MFGs. Interpreting MFGs as GANs, on one hand, allows us to devise GANs-based algorithm to solve MFGs. Interpreting GANs as MFGs, on the other hand, provides a new and probabilistic foundation for GANs. Moreover, this interpretation helps establish an analytical connection between GANs and Optimal Transport (OT) problems, the connection previously understood mostly from the geometric perspective. We will illustrate by numerical examples of using GANs to solve high dimensional MFGs, demonstrating its superior performance over existing methodology.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.