Date
Mon, 09 Nov 2020
Time
16:00 - 17:00
Location
Virtual
Speaker
Nicholas Edelen
Organisation
University of Notre Dame

Hardt-Simon proved that every area-minimizing hypercone $C$ having only an isolated singularity fits into a foliation of $R^{n+1}$ by smooth, area-minimizing hypersurfaces asymptotic to $C$. We prove that if a minimal hypersurface $M$ in the unit ball $B_1 \subset R^{n+1}$ lies sufficiently close to a minimizing quadratic cone (for example, the Simons' cone), then $M \cap B_{1/2}$ is a $C^{1,\alpha}$ perturbation of either the cone itself, or some leaf of its associated foliation. In particular, we show that singularities modeled on these cones determine the local structure not only of $M$, but of any nearby minimal surface. Our result also implies the Bernstein-type result of Simon-Solomon, which characterizes area-minimizing hypersurfaces in $R^{n+1}$ asymptotic to a quadratic cone as either the cone itself, or some leaf of the foliation.  This is joint work with Luca Spolaor.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.