Subspace arrangements and the representation theory of rational Cherednik algebras

20 October 2020
Stephen Griffeth

I will explain how the representation theory of rational Cherednik algebras interacts with the commutative algebra of certain subspace arrangements arising from the reflection arrangement of a complex reflection group. Potentially, the representation theory allows one to study both qualitative questions (e.g., is the arrangement Cohen-Macaulay or not?) and quantitative questions (e.g., what is the Hilbert series of the ideal of the arrangement, or even, what are its graded Betti numbers?), by applying the tools (such as orthogonal polynomials, Kazhdan-Lusztig characters, and Dirac cohomology) that representation theory provides. This talk is partly based on joint work with Susanna Fishel and Elizabeth Manosalva.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).