Representation theory of wreath products

26 January 2021
Reuben Green

The wreath product of a finite group, or more generally an algebra, with a symmetric group is a familiar and important construction in representation theory and other areas of Mathematics. I shall present some highlights from my work on the representation theory of wreath products. These will include both structural properties (for example, that the wreath product of a cellular algebra with a symmetric group is again a cellular algebra) and cohomological ones (one 
particular point of interest being a generalisation of the result of Hemmer and Nakano on filtration multiplicities to the wreath product of two symmetric groups). I will also give an outline of some potential applications of this and related theory to important open  problems in algebraic combinatorics.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).