Quantitative inviscid limits and universal shock formation in scalar conservation laws

18 February 2021
Cole Graham

Further Information: 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.


We explore one facet of an old problem: the approximation of hyperbolic conservation laws by viscous counterparts. While qualitative convergence results are well-known, quantitative rates for the inviscid limit are less common. In this talk, we consider the simplest case: a one-dimensional scalar strictly-convex conservation law started from "generic" smooth initial data. Using a matched asymptotic expansion, we quantitatively control the inviscid limit up to the time of first shock. We conclude that the inviscid limit has a universal character near the first shock. This is joint work with Sanchit Chaturvedi.

  • PDE CDT Lunchtime Seminar