Linear-Quadratic Stochastic Differential Games on  Directed Chain Networks

14 June 2021

We present linear-quadratic stochastic differential games on directed chains inspired by the directed chain stochastic differential equations introduced by Detering, Fouque, and Ichiba in a previous work. We solve explicitly for Nash equilibria with a finite number of players and we study more general finite-player games with a mixture of both directed chain interaction and mean field interaction. We investigate and compare the corresponding games in the limit when the number of players tends to infinity. 

The limit is characterized by Catalan functions and the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain, with or without the presence of mean field interaction.

Joint work with Yichen Feng and Tomoyuki Ichiba.

  • Stochastic Analysis & Mathematical Finance Seminars