Trading with the crowd

29 April 2021

Abstract: We formulate and solve a multi-player stochastic differential game between financial agents who seek to cost-efficiently liquidate their position in a risky asset in the presence of jointly aggregated transient price impact on the risky asset's execution price along with taking into account a common general price predicting signal. In contrast to an interaction of the agents through purely permanent price impact as it is typically considered in the literature on multi-player price impact games, accrued transient price impact does not persist but decays over time. The unique Nash-equilibrium strategies reveal how each agent's liquidation policy adjusts the predictive trading signal for the accumulated transient price distortion induced by all other agents' price impact; and thus unfolds a direct and natural link in equilibrium between the trading signal and the agents' trading activity. We also formulate and solve the corresponding mean field game in the limit of infinitely many agents and show how the latter provides an approximate Nash-equilibrium for the finite-player game. Specifically we prove the convergence of the N-players game optimal strategy to the optimal strategy of the mean field game.     (Joint work with Moritz Voss)

  • Mathematical and Computational Finance Internal Seminar