Seminar series
Date
Tue, 08 Jun 2021
Time
14:00 - 15:00
Location
Virtual
Speaker
Mihai Cucuringu
Organisation
University of Oxford

We consider the problem of clustering in two important families of networks: signed and directed, both relatively less well explored compared to their unsigned and undirected counterparts. Both problems share an important common feature: they can be solved by exploiting the spectrum of certain graph Laplacian matrices or derivations thereof. In signed networks, the edge weights between the nodes may take either positive or negative values, encoding a measure of similarity or dissimilarity. We consider a generalized eigenvalue problem involving graph Laplacians, with performance guarantees under the setting of a signed stochastic block model. The second problem concerns directed graphs. Imagine a (social) network in which you spot two subsets of accounts, X and Y, for which the overwhelming majority of messages (or friend requests, endorsements, etc) flow from X to Y, and very few flow from Y to X; would you get suspicious? To this end, we also discuss a spectral clustering algorithm for directed graphs based on a complex-valued representation of the adjacency matrix, which is able to capture the underlying cluster structures, for which the information encoded in the direction of the edges is crucial. We evaluate the proposed algorithm in terms of a cut flow imbalance-based objective function, which, for a pair of given clusters, it captures the propensity of the edges to flow in a given direction. Experiments on a directed stochastic block model and real-world networks showcase the robustness and accuracy of the method, when compared to other state-of-the-art methods. Time permitting, we briefly discuss potential extensions to the sparse setting and regularization, applications to lead-lag detection in time series and ranking from pairwise comparisons.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.