Calculation of zeta functions for one parameter families of Calabi-Yau manifolds

26 April 2021
Philip Candelas

The periods of a Calabi-Yau manifold are of interest both to number theorists and to physicists. To a number theorist the primary object of interest is the zeta function. I will explain what this is, and why this is of interest also to physicists. For applications it is important to be able to calculate the local zeta function for many primes p. I will set out a method, adapted from a procedure proposed by Alan Lauder that makes the computation of the zeta function practical, in this sense, and comment on the form of the results. This talk is based largely on the recent paper hepth 2104.07816 and presents joint work with Xenia de la Ossa and Duco van Straten.

  • String Theory Seminar