Harish-Chandra Lefschetz principle for branching laws of general linear groups

15 June 2021
14:15
Kei Yuen Chan
Abstract

The Harish-Chandra Lefschetz principle asserts representation theory for real groups, p-adic groups and automorphic forms should be placed on an equal footing. A particular example in this aspect is that Ciubotaru and Trapa constructed Arakawa-Suzuki type functors between category of Harish-Chandra modules and category of graded Hecke algebra modules, giving an explicit connection on the representation categories between p-adic and real sides. 

This talk plans to begin with comparing the representation theory between real and p-adic general linear groups, such as unitary and unipotent representations. Then I shall explain results in more details on the p-adic branching law from GL(n+1) to GL(n), including branching laws for Arthur type representations (one of the non-tempered Gan-Gross-Prasad conjectures). The analogous results and predictions on the real group side will also be discussed. Time permitting, I will explain a notion of left-right Bernstein-Zelevinsky derivatives and its applications on branching laws.
 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).