Date
Thu, 18 Nov 2021
Time
12:00 - 13:00
Location
L3
Speaker
Hélène de Maleprade
Organisation
Sorbonne Jean Le Rond d’Alembert Lab

Microscopic green algae show great diversity in structural complexity, and successfully evolved efficient swimming strategies at low Reynolds numbers. Gonium is one of the simplest multicellular algae, with only 16 cells arranged in a flat plate. If the swimming of unicellular organisms, like Chlamydomonas, is nowadays widely studied, it is less clear how a colony made of independent Chlamydomonas-like cells performs coordinated motion. This simple algae is therefore a key organism to model the evolution from single-celled to multicellular locomotion.

In the absence of central communication, how can each cell adapt its individual photoresponse to efficiently reorient the whole algae? How crucial is the distinctive Gonium squared structure?

In this talk, I will present experiments investigating the shape and the phototactic swimming of Gonium, using trajectory tracking and micro-pipette techniques. I will explain our model linking the individual flagella response to the colony trajectory. This eventually emphasises the importance of biological noise for efficient swimming.

Further Information

Hélène de Maleprade is maîtresse de conférence (assistant professor) at Sorbonne Université, in the Institut Jean Le Rond ∂'Alembert, in Paris. Her research focus is now on the swimming of micro-organisms in complex environments inspired by pollution, using soft matter.

You can read her work here.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.