Date
Thu, 28 Oct 2021
Time
16:00 - 17:00
Location
L3
Speaker
CHRISTOPH REISINGER
Organisation
University of Oxford

We consider the problem faced by a central bank which bails out distressed financial institutions that pose systemic risk to the banking sector. In a structural default model with mutual obligations, the central agent seeks to inject a minimum amount of cash to a subset of the entities in order to limit defaults to a given proportion of entities. We prove that the value of the agent's control problem converges as the number of defaultable agents goes to infinity, and it satisfies  a drift controlled version of the supercooled Stefan problem. We compute optimal strategies in feedback form by solving numerically a forward-backward coupled system of PDEs. Our simulations show that the agent's optimal strategy is to subsidise banks whose asset values lie in a non-trivial time-dependent region. Finally, we study a linear-quadratic version of the model where instead of the losses, the agent optimises a terminal loss function of the asset values. In this case, we are able to give semi-analytic strategies, which we again illustrate numerically. Joint work with Christa Cuchiero and Stefan Rigger.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.