Date
Mon, 21 Feb 2022
Time
15:30 - 16:30
Location
L3
Speaker
GUDMUND PAMMER
Organisation
ETH Zurich

Wasserstein distance induces a natural Riemannian structure for the probabilities on the Euclidean space. This insight of classical transport theory is fundamental for tremendous applications in various fields of pure and applied mathematics. We believe that an appropriate probabilistic variant, the adapted Wasserstein distance $AW$, can play a similar role for the class $FP$ of filtered processes, i.e. stochastic processes together with a filtration. In contrast to other topologies for stochastic processes, probabilistic operations such as the Doob-decomposition, optimal stopping and stochastic control are continuous w.r.t. $AW$. We also show that $(FP, AW)$ is a geodesic space, isometric to a classical Wasserstein space, and that martingales form a closed geodesically convex subspace. Finally we consider computational aspects and provide a novel method based on the Sinkhorn algorithm.

The talk is based on articles with Daniel Bartl, Mathias Beiglböck and Stephan Eckstein.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.